
Well, don’t be scared because of the picture that I take from this paper. Basically we want to install a python thingy on a conda environment. It should work out of the box. Let me show you what happened in my case. I’m following the github installation procedure.
$ > conda create --name cryodrgn1 python=3.9
Collecting package metadata (current_repodata.json): done
Solving environment: done
## Package Plan #
environment location: /XXX/.conda/envs/cryodrgn1
added / updated specs:
- python=3.9
The following packages will be downloaded:
package | build
---------------------------|-----------------
ca-certificates-2023.01.10 | h06a4308_0 120 KB
libffi-3.4.2 | h6a678d5_6 136 KB
ncurses-6.4 | h6a678d5_0 914 KB
openssl-1.1.1t | h7f8727e_0 3.7 MB
python-3.9.16 | h7a1cb2a_0 25.0 MB
wheel-0.38.4 | py39h06a4308_0 64 KB
----------------------------------------------------------- Total: 30.0 M
The following NEW packages will be INSTALLED:
_libgcc_mutex pkgs/main/linux-64::_libgcc_mutex-0.1-main
_openmp_mutex pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu
... some more packages here...
zlib pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0
Proceed ([y]/n)? y
After this we activate the environment and start customising it.
(cryodrgn1) user@server ~ $ > conda install pytorch -c pytorch
Collecting package metadata (current_repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /XXX/.conda/envs/cryodrgn1
added / updated specs:
- pytorch
The following packages will be downloaded:
package | build
---------------------------|-----------------
blas-1.0 | mkl 6 KB
flit-core-3.6.0 | pyhd3eb1b0_0 42 KB
intel-openmp-2022.1.0 | h9e868ea_3769 4.5 MB
mkl-2022.1.0 | hc2b9512_224 129.7 MB
pytorch-1.13.1 | py3.9_cpu_0 81.6 MB pytorch-mutex-1.0 | cpu 3 KB typing_extensions-4.4.0 | py39h06a4308_0 46 KB
------------------------------------------------------------ Total: 215.9 MB
The following NEW packages will be INSTALLED:
blas pkgs/main/linux-64::blas-1.0-mkl
... some more packages here ...
typing_extensions pkgs/main/linux-64::
typing_extensions-4.4.0-py39h06a4308_0
Proceed ([y]/n)? y
Now we install two classics, pandas and scikit.
(cryodrgn1) user@server ~ $ > conda install pandas(cryodrgn1) user@server ~ $ > conda install seaborn scikit-learn
(cryodrgn1) user@server ~ $ > conda install umap-learn
jupyterlab ipywidgets
cufflinks-py "nodejs>=15.12.0" -c conda-forge
And after this, a whole lotta jupyter lab extensions.
(cryodrgn1) user@server ~ $ >jupyter labextension install
(cryodrgn1) user@server ~ $ >
@jupyter-widgets/jupyterlab-manager --no-buildjupyter labextension install
(cryodrgn1) user@server ~ $ >
jupyterlab-plotly --no-buildjupyter labextension install
plotlywidget --no-build(cryodrgn1) user@server ~ $ > jupyter lab build
[LabBuildApp] JupyterLab 3.5.0
[LabBuildApp] Building in /XXX/.conda/envs/cryodrgn1/share/jupyter/lab
[LabBuildApp] Building jupyterlab assets (production, minimized)
The pip installation goes very smoothly, and at the end, we are able to run our test command.
git clone https://github.com/zhonge/cryodrgn.git
cd cryodrgn
pip install .
Which is not meaning, of course, that we are going to use the program in a satisfactory way. But a smooth install is a good beginning 🙂